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ABSTRACT

This paper discusses a distributed version of Wald’s sequential hypothesis testing problem in the con-
tinuous time framework. For sake of concreteness, two decision-makers equipped with their own sensors, are

faced with the following hypothesis testing problem : Decide between hypothesis Ho and H;, where
Under H, : dX; = p;dt +o; dW§, i=1,2
Under Hp : dX; = o dWi, i=1,2,

with g; # 0 and o; # 0, ¢ = 1,2, non-random; here the noises {W}, t > 0} and {W2, t > 0} are independent
Brownian motions.

Data is observed continuously and at each instant in time, each decision-maker can either declare one of
the hypotheses to be true or continue collecting data. In either case, they base their individual decisions on
the data collected by their own sensors up to that time; they do not communicate with each other and so do
not share information. The decisions are selected to minimize a joint cost function with two components, the
first one capturing the cost for collecting data, and the second assessing the cost for incorrect decisions. This
is the simplest problem of its type, for the coupling between the two decision—makers occurs only through
the cost structure. This problem was considered first in discrete-time by Teneketzis [6] who showed that the
person-by-person optimal strategy was of threshold type for each sensor. Here a similar result is derived by
simple and direct arguments based on well-known facts for the single detector problem. Moreover, ezplicit
formulae are derived for this joint cost function when the detector policies are of threshold type, owing to
the fact that at the decision times, the likelihood functionals assume one of two threshold values owing to
the continuity of the paths of Brownian motion. This is in sharp contrast with the overshoot phenomena
that leads in the discrete—time situation to the celebrated Wald approximations. These explicit formulae
not only vividly display the cost interaction taking place between the two sensors but readily allow for a
reduction of the original problem to a mathematical programming problem in four variables over a simple

constraint set.



1. INTRODUCTION:

Consider the following sequential testing of two simple hypotheses Hy and H; with two decision-makers:
Decision-maker 1 is equipped with its own sensor and observes the increments dX;} of the stochastic process
X¢ = {X},t > 0} with values in R. Under each hypothesis, the observed data is the output of a stochastic

dynamical system, i.e.,
Under H; : dX; = pidt+o0;dW;, 1=1,2

Under Ho : dX; = oi dW}, 1=1,2,
where u; # 0 and 0; # 0, ¢ = 1,2, are non-random. Here the noises {W}, t > 0} and {W?, ¢t > 0} are
independent Brownian motions. As usual, hypotheses H; and Hy correspond to the “signal in noise” and
“noise only” situations extensively treated in the literature on signal detection.

Data is observed continuously starting at an initial time which is taken for convenience to be zero.
At each time ¢ > 0, each decision maker can either declare one of the hypotheses to be true or continue
collecting data. In either case, the decision makers base their individual decisions on the data collected by
their own sensors up to that time; they do not communicate with each other and so do not share information.
These decisions are made in some “optimal” fashion in that they minimize a joint cost function with two
components, the first one capturing the cost for collecting data and the second assessing the cost for tncorrect
decisions. This is the simplest problem of its type, for the coupling between the two decision—makers occurs
only through the cost structure. Such a problem was considered first in discrete-time by Teneketzis [6] who
showed that the person-by-person optimal strategy was of threshold type for each decision-maker. Here a
similar result is derived by stmple and direct arguments based on well-known facts for the single detector
problem.

The advantages of the continuous—time formulation over the discrete-time one lie in the following
features: Ezplicit formulae can be derived for the joint cost function when the detector policies are of
threshold type. This follows from the fact that at the decision times, the likelihood functionals assume
one of two threshold values owing to the continuity of the paths of Brownian motion. This is in sharp
contrast with the overshoot phenomena that leads in the discrete—time situation to the celebrated Wald
approximations. These explicit formulae not only vividly display the cost interaction taking place between
the two sensors but readily allow for a reduction of the original problem to a mathematical programming

problem in four variables over a simple constraint set.

The paper is organized as follows: The precise problem formulation is given in Section 2, the single-
detector problem is presented in Section 3, and the results described in Section 4. The technical discussion

is contained in Sections 5 and 6, each section being devoted to the proof of a main result. A useful technical
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lemma is given in the appendix for completeness.



2 PROBLEM FORMULATION:

In this paper, a Bayesian formulation is adopted for the problem loosely described in the introduction.
Let (2, 7, P) be a probability triple carrying a {0, 1}-valued random variable (RV) H and two R-valued
processes {W, t > 0} and {W2, t > 0}. Throughout the discussion, it is assumed that under P,
(A1): The RV H and the processes {W{, t > 0} and {W2, t > 0} are mutually independent,
(A2): Each process {W{, t > 0},:=1,2, is a standard Brownian motion, and
(A3): Forsome A ,0< A< 1,
P[H=1]=A=1-P[H=0]. (2-1)

The R-valued processes {X}, t > 0} and {X?, t > 0} are defined as outputs of the dynamical system

dX; = H p; dt + o; dW},
: 1=1,2, (2.2)
Xi=0
or equivalently,

Xi=Hupt+o; Wi, t>0, i=1,2, (2-3)

where i # 0 and o7 # 0 are non-random.
To fix the notation, let {.ﬁW‘, t>0}and {7FX,t > 0} be the {P-completion of) the filtrations generated

by the processes {W}, t > 0} and {X?, t > 0}, respectively. Let
G =FX ve(H), t>0 (2.4)
with

g =\ g (2.5)

The decision policy for decision-maker 7 , 2 = 1, 2, involves the selection of a termination time 7; and of a
binary valued decision §;, and an admissible decision policy for decision-maker ¢ is thus any pair v; = (n, &)
of RV’s, where 7; is an in-stopping time and §; is an ﬂz(i-mea,sura.ble {0, 1}-valued RV. Denote by I'; the

collection of all admissible decision policies for decision-maker 7z and let ' := I'; X I's.

Let k; and kz be positive constants and let C be a mapping {0,1} x {0,1} x {0,1} — R™. For every

pair v = (y1,72) in T, define the cost function J(v) to be
J(V) = Elkimy + kamy + C(61, 625 H) | (2.6)

The problem (P) investigated in this paper is then



(P): Minimize Jy(y) over T.

An admissible policy 4* in T is said to solve problem (P) if
J(y*)<J(). forallynT.

The purpose of this paper is to identify the structure of an optimal policy.

(2.7)



8. THE SINGLE-DETECTOR PROBLEM

Consider the following single-detector sequential hypothesis testing problem defined say on some underly-
ing probability triple (2, ¥, P). A decision-maker observes the increments of a stochastic process {Xg, t > 0}
with values in JR. Under each hypothesis, the observed data include a signal which is the output of a stochas-
tic dynamical system, i.e.,

dX¢=/£Hdt+0'de (3.1)

where as before y # 0 and o # 0 are non-random, and {W;, t > 0} is a standard Brownian motion.

Data is observed continuously starting at an initial time which is taken for convenience to be zero. At
each time t > 0, the decision maker can either declare one of the hypotheses to be true or continue collecting
data. Decisions are made so as to optimize a cost function with two components, the first one capturing the
cost for collecting data, and the second one assessing the cost for incorrect decisions.

More formally, let {#X, t > 0} be the (P—~completion of the) filtration generated by the process {X;, t >
0}. An admissible policy is any pair y = (1, §) of RV’s where 7 is an 7X-stopping time and § is a {0, 1}-valued
FX -measurable RV. The collection of all admissible policies is denotes by I',. The cost corresponding t(')
any « in T, is given by

J (v ky¢) = E[kr + ¢ 1[6 # H]) (3-2)
The problem faced by the single detector is the to find 4* in Iy such that
J(r';k,¢) < J(wk,¢) (3.3)

for all other v in I',.

Let {m, t > 0} be the 7*-adapted process defined by
m:=PH=1|F%], t>0. (3.4)

Note that m; is the posteriori probability of hypothesis H; given the observations 7X.

Theorem 8.1. The admissible decision policy 4* = (r*,6*) given by

r =inf{t >0 | m # (4%, B*)}, (3.5a)
. 1, Tr* > B*,
5* = {0, o < A (3.5b)

1s optimal in the sense of (8.3). The constants A* and B* are the unique solutions to the transcendental

€qUALIONnS
B 2ko?

2¢ = 7 (V'(4*) — ¥'(B*)) (3.6)




2ko?

c(1— B*)=cA* + (B* — A*)(c — 2

U'(A*)) + k(¥(B*) — ¥(A4*)) (3.7)
where ¥(z) = (1 — 2z) log(z/(1 — z)).
Proof: See ( [5], Theorem 5, p.185).

It is further known {5} that for all admissible policies of the form (3.5) with constants (A, B) satisfying

0< A< 1< B < oo and A # B, the relations

Blr|H=1]=2%w(f,a),  Blr | H=0]=2% u(xp) (3.8)
hold with

w(z,y) = (1—2)1og(1“””)+x10g(£_;), 0<zy<l, (3.9)
and



4. THE RESULTS:

Throughout the discussion, the decision cost satisfies the natural conditions

C(m,n;n) > C(n,n;n) (4.1)
C(m,m;n) > C(n,m;n) (4.2)
C(m, n; h) = C(n, m;h) (4.3)

for all n , m, h in {0, 1}, with m # n. In other words, it always cost more to make an error than it does
to make the correct decision, regardless of which decision is taken by the other decision-maker. As readily

checked, there is no loss in generality in assuming zero cost for correct decisions, 1.e.,
C(1,1;1) = €(0,0;0) = 0, (4.4)

an assumption enforced from now on.
To state the results of this paper, it is convenient to introduce the 7X i-adapted processes {7}, t > 0}

and {¢, t > 0}, 7 = 1,2, where

mi=PH=1|7%), >0, (4.5)

and
i Biggi 1

For each decision-maker, a policy 4; = (r;,6;) in T, 1 = 1,2, is said to be of threshold type if there

exists constants A; and B;, with 0 < A; < B; <1, such that

:=inf{t > 0: 7r§ ¢ (A;, By)} (4.7)
and .
1 ifxp > B;
5,' = . (48)
0 ifnrt < A;.

Ty —

As is well known {5, p. 181}, the relation

; A
AL 4 >
e (1—2)+ ¢t =

holds. Therefore, any threshold policy for decision-maker ¢ with constants (A;, B;) takes the form

TP 1= inf{t >0: qS; ¢ (a;, b,—)} (4.10)
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and .
1 if ¢}, > b
6 == _ (4.11)
0 if ¢‘.~ S a'i)

where the new thresholds a; and b; are given by

(D)) (D) e

From now on, a threshold policy «; in [; will be described in the form (4.10)-(4.11) and will thus be

identified with two threshold constants a; and b;, 0 < a; < 1 < b;, a; # b;. Let T; be the collection of all

threshold policies in T'; for decision-maker ¢, with the notation T = Ty X T2.

THEOREM 4.1: Under the foregoing assumptions,
inf J(v) = inf J(y 4.
ser () 2ET ™), (4.13)

t.e., only threshold policies need to be considered in solving problem (P ).
For simplicity of exposition, the discussion is carried out under the additional assumption that the
decision cost has the form
0 for dl = d2 = h

C(dy,da; R} = {e for dy # do (4.14)
f for dy = dy # h.

The general case can be handled in a similar way but the calculations are more involved. Details are worked
out in a lengthier version of this paper [3].

Let «; and <y, be threshold policies with parameters (a1, b1) and (a2, b2), respectively, and pose
a; = Pl6; =1|H =0], pi=Pl&=0|H=1], 1=1,2, (4.15)
the so-called error probabilities of the first and second kind, respectively, or in radar parlance, the false
alarm and mass probabilities.

THEOREM 4.2: Under the foregoing assumptions, any pair of threshold policies 4, and 2 with parameters

(@1,b1) and (az,bz), respectively, incurs a cost J(v) given by the ezpression

J('7) = j('Yl; kl) e) + j(’iz; k2, e) + (f - 28)[A,31ﬂ2 -+ (1 — /\)alaz] (416)

where j('y; k,c) is the function defined in (3.2).
Together Theorems 4.1 and 4.2 thus reduce the search for a solution v* to problem (P) to a mathematical

programming problem in the variables (o, 81, a2, B2) over a simple constraint set.

THEOREM 4.8: Under the foregoing assumptions, problem (P ) is solved by a pair v° = {7i,73) of

threshold policies in T .



5. A DISCUSSION OF THEOREM 4.1.

The discussion given below hinges upon arguments very similar to the ones proposed by Teneketzis in
the discrete-time case [6], as would be expected. Here too, the basic idea lies in switching attention from
optimality for problem (P) defined in (2.7) to person-by-person optimality, as understood in the literature
on multi-agent decision-making. Under the strong independence assumptions made here, this procedure
leads to a decoupling of the two decision-makers. Some of the details underlying this line of reasoning are
presented in the next two technical le;rlmas.

For every admissible policy 73 in I'z, define the mapping 61,: {0,1} x {0,1} — R by

Coa(d1, k) : = E[C(dy, 605 h) | H = R]
= C(dy,1;h) P[6g = 1| H = h] + C(dy,0; ) P[62 = 0| H = h} (5.1)
for all (dy, k) in {0,1} x {0,1}. The conditions (4.1)-(4.2) readily imply that this mapping satisfies the

condition

5’12 (511 h) > 6’12 (h) h’)' (5'2)

for all (dy,h) in {0,1} x {0, 1}.
Lemma 5.1: Under the foregoing assumptions, the o-fields G' and G2 are conditionally independent

given H.

Proof: This readily follows from the assumptions (A1), (2.3) and the obvious o-field identity

Gi =7 Vvo(H)= 7" vo(H), t>0. D

Lemma 5.2. With the notation (5.1), the relation
E[C(81,62; H)) = E[C., (61, H)] (5.3)

holds true for every pair v = (v1,72) in I

Proof: By standard properties of conditional expectations, the equalities

E[C(81,62; H)] = E{ E{C(61,62; H| §'] ] (5.4)

= E[ E[C(d1, 62;1) | §'las=b1,n=r1 | (5.5)
are readily obtained. From Proposition A.1l of the appendix and from Lemma 5.1, it follows that

E(C(d1, 623 k) | §7) = E[C(dy, 625 h) | o(H)] (5.6)
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for all (dy,h) in {0,1} x {0,1}. Substitution of this last relation into (5.5) and use of the definition (5.1)

now yield the result. 0

Proof of Theorem 4.1:

With v = (71,92) in T, Lemma 5.2 implies that

J(7) = E[k1r1 + karz + Copy (61, H) |

= kg E[ 2] + Ty, (1), (5.7)

where

T1a (1) = Blksrs + Co (61, H) ). (5.8)

The sequential hypothesis problem (P /~;) faced by decision maker 1, with 5 fixed, takes the form
(P/v2) Minimaize j,, (v1) over Ty.

Under the assumed conditions, this problem is a single-detector sequential hypothesis testing problem with
decision cost 6.,, of the type discussed in Section 3. Here k = k; and ¢ = e. As pointed out in Theorem 3.1,
the admissible policy 77 in I'; that solves problem (P /~2) is of threshold type ([5], Theorem 5, p. 185).

Therefore, for every pair v in T, there exists a threshold policy 41 in Ty such that

f'lz (2/,1) < f'y: ('71): (5.9)

or equivalently,

J(12) € J(v, 1) = J(v). (5.10)

By symmetry, interchanging the role of 4, and 2, there exists a threshold policy ¥z in T2 such that

T F) < I(). (5.11)

This last step, when applied with the pair (¥;,2) (instead of (v1,2)) yields the existence of a threshold
policy ¥, in T such that

J({1,592) < J(F1,72)- (5.12)

This shows that to every admissible policy -y in I, there corresponds an admissible policy & in T such that
J@H) < J(), (5.13)

and the result of Theorem 4.1 is now immediate since T C I. o

11



6. Proof of Theorem 4.2:

Let « be an admissible policy 7. By elementary calculations, the corresponding cost is given by

J(ry) = E[klfl + ,C27'2 + C(él; 52; H)]

E[k1T1+szz+C(1,52;H)P[51=1|H1+C(0;52;H) (1-P[& = 1|H])]
FE

[Firi + kara + C(L L H) Pl = 1| H] P& = 1] H]
+C(1,0;H) P[6y =1|H| - P[6 =0 | H]
+C(0,1;H) (1— P[6y=1|H|)P{6; =1| H]
+C(0,0,H) (1— Py = 1| H))(1 — P[6; =1))]
= B[k + kara | + A[C(L L1 (1 - A)(L = B2) + C(1,0,1) (1~ £u) s
+C(0,031)B1(1 ~ Ba) + C(0,0;1)Buf
+ (1= 3)[c(1, 10010z + C(1,050)as(L - a2)
+€(0,1;0)(1 — a1)ag + (0, 0;0)(1 — az) (1 — ag)]
= B[k + kara |+ M[e(B1 + B2) + (k — 2¢)1/3

+{1-2X) [e(a1 + ag) + (k— 2e)a1a2]

where «; and f; were defined in (4.16).

In order to compute the first expectation term in (6.5), it is convenient to observe that
E[n] =/\E[7’,' | H = 1] +(1—/\)E[n |H=o], i=1,2
thus reducing the final step of the computation to the evaluation of the conditional expectations
E[r,- | H =h], i=1,2,

whose expressions are given in (3.8). The result of Theorem 4.2 now follows.

12
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7. CONCLUSIONS:

Based on Theorem 4.2 an explicit solution can be computed for the thresholds of each agent once the
parameters of the problem are given (ky, k2,¢, f). The mathematical programming problem described in
Theorem 4.2 is readily seen to have a unique solution, and can be solved by a variety of methods, say a

Newton-like scheme. By solving (6.5) for the constants (o1, f1, a2, B2), the thresholds are easily determined
via the relations (3.10) and (4.12).
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APPENDIX
On some probability triple (2, 7, P), consider three o-fields #;, 7 and 75, and X be an integrable
R-valued RV.

Proposition A.1: If the o-fields 7; and F» are conditionally tndependent given the o-field 73, then
E(X|HVvH|=EX|%H] P—a.s. (A1)

whenever X 1s an F;-measurable RV.

Proof: By virtue of the Monotone Class Theorem, it suffices to establish (A.1) for any bounded #;-measurable
RV. To that end, let F, and F5 be arbitrary elements of the o-fields 7 and 7, respectively. By the very

definition of conditional expectation,

E[1rnr E[X | 72V 53] | = E[1p, X 1F, | (42)
= E[1r E{1r, X | %] | (43)
=E[1F3E[1F:|?3]E[X|?Z3] ]’ (A4)

where the last equality was obtained by making use of the conditional independence of the o-fields 7 and
72 given 73. The F3-measurability of the RV’s 15, and E[ X | 73| now readily yields

E(1r, B[1r, | B3] E|X | %3] ] = E[E[1r, E[X | %s]1p, | ] ] (45)

= E[lp;or, E[X | 73] (46)

via the smoothing property for conditional expectations.

Consequently,
E(1rnr, E[X | %2V 53] | = E[1p,0r, B[ X | 7] | (A7)

and the result (A1) immediately follows by standard arguments. D
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